viz
Module: viz.app
Horizon ([tractograms, images, pams, ...])
|
|
apply_shader (hz, act)
|
Apply a shader to an actor (act) that access shared memory |
horizon ([tractograms, images, pams, ...])
|
Interactive medical visualization - Invert the Horizon! |
Module: viz.horizon.app
Horizon ([tractograms, images, pams, ...])
|
|
horizon ([tractograms, images, pams, ...])
|
Interactive medical visualization - Invert the Horizon! |
Module: viz.horizon.tab.base
Module: viz.horizon.tab.cluster
Module: viz.horizon.tab.peak
Module: viz.horizon.tab.roi
Module: viz.horizon.tab.slice
Module: viz.horizon.visualizer
Module: viz.horizon.visualizer.cluster
Module: viz.horizon.visualizer.slice
Module: viz.panel
build_label (text[, font_size, bold])
|
Simple utility function to build labels |
slicer_panel (scene, iren[, data, affine, ...])
|
Slicer panel with slicer included |
Module: viz.plotting
plotting functions
compare_maps (fits, maps[, transpose, ...])
|
Compare one or more scalar maps for different fits or models. |
compare_qti_maps (gt, fit1, fit2, mask[, ...])
|
Compare one or more qti derived maps obtained with different fitting routines. |
bundle_shape_profile (x, shape_profile, std)
|
Plot bundlewarp bundle shape profile. |
Module: viz.projections
Visualization tools for 2D projections of 3D functions on the sphere, such as
ODFs.
sph_project (vertices, val[, ax, vmin, vmax, ...])
|
Draw a signal on a 2D projection of the sphere. |
Module: viz.streamline
show_bundles (bundles[, interactive, view, ...])
|
Render bundles to visualize them interactively or save them into a png. |
viz_two_bundles (b1, b2, fname[, c1, c2, ...])
|
Render and plot two bundles to visualize them. |
viz_vector_field (points_aligned, directions, ...)
|
Render and plot vector field. |
viz_displacement_mag (bundle, offsets, fname)
|
Render and plot displacement magnitude over the bundle. |
-
class dipy.viz.app.Horizon(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, out_png='tmp.png', recorded_events=None, return_showm=False, bg_color=(0, 0, 0), order_transparent=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0))
Bases: object
-
__init__(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, out_png='tmp.png', recorded_events=None, return_showm=False, bg_color=(0, 0, 0), order_transparent=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0))
Interactive medical visualization - Invert the Horizon!
Parameters
- tractogramssequence of StatefulTractograms
StatefulTractograms are used for making sure that the coordinate
systems are correct
- imagessequence of tuples
Each tuple contains data and affine
- pamssequence of PeakAndMetrics
Contains peak directions and spherical harmonic coefficients
- clusterbool
Enable QuickBundlesX clustering
- cluster_thrfloat
Distance threshold used for clustering. Default value 15.0 for
small animal data you may need to use something smaller such
as 2.0. The threshold is in mm. For this parameter to be active
cluster
should be enabled.
- random_colorsstring, optional
Given multiple tractograms and/or ROIs then each tractogram and/or
ROI will be shown with a different color. If no value is provided,
both the tractograms and the ROIs will have a different random
color generated from a distinguishable colormap. If the effect
should only be applied to one of the 2 types, then use the
options ‘tracts’ and ‘rois’ for the tractograms and the ROIs
respectively.
- length_gtfloat
Clusters with average length greater than length_gt
amount
in mm will be shown.
- length_ltfloat
Clusters with average length less than length_lt
amount in mm
will be shown.
- clusters_gtint
Clusters with size greater than clusters_gt
will be shown.
- clusters_ltint
Clusters with size less than clusters_lt
will be shown.
- world_coordsbool
Show data in their world coordinates (not native voxel coordinates)
Default True.
- interactivebool
Allow user interaction. If False then Horizon goes on stealth mode
and just saves pictures.
- out_pngstring
Filename of saved picture.
- recorded_eventsstring
File path to replay recorded events
- return_showmbool
Return ShowManager object. Used only at Python level. Can be used
for extending Horizon’s cababilities externally and for testing
purposes.
- bg_colorndarray or list or tuple
Define the background color of the scene.
Default is black (0, 0, 0)
- order_transparentbool
Default True. Use depth peeling to sort transparent objects.
If True also enables anti-aliasing.
- buanbool, optional
Enables BUAN framework visualization. Default is False.
- buan_colorslist, optional
List of colors for bundles.
- roi_imagesbool, optional
Displays binary images as contours. Default is False.
- roi_colorsndarray or list or tuple, optional
Define the colors of the roi images. Default is red (1, 0, 0)
References
[Horizon_ISMRM19]
Garyfallidis E., M-A. Cote, B.Q. Chandio,
S. Fadnavis, J. Guaje, R. Aggarwal, E. St-Onge, K.S. Juneja,
S. Koudoro, D. Reagan, DIPY Horizon: fast, modular, unified and
adaptive visualization, Proceedings of: International Society of
Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
-
add_cluster_actors(scene, tractograms, threshold, enable_callbacks=True)
Add streamline actors to the scene
Parameters
scene : Scene
tractograms : list
- thresholdfloat
Cluster threshold
- enable_callbacksbool
Enable callbacks for selecting clusters
-
build_scene()
-
build_show(scene)
-
remove_cluster_actors(scene)
apply_shader
-
dipy.viz.app.apply_shader(hz, act)
Apply a shader to an actor (act) that access shared memory
Parameters
hz : GlobalHorizon instance
act : fury.actor visual object
horizon
-
dipy.viz.app.horizon(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, bg_color=(0, 0, 0), order_transparent=True, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0), out_png='tmp.png', recorded_events=None, return_showm=False)
Interactive medical visualization - Invert the Horizon!
Parameters
- tractogramssequence of StatefulTractograms
StatefulTractograms are used for making sure that the coordinate
systems are correct
- imagessequence of tuples
Each tuple contains data and affine
- pamssequence of PeakAndMetrics
Contains peak directions and spherical harmonic coefficients
- clusterbool
Enable QuickBundlesX clustering
- cluster_thrfloat
Distance threshold used for clustering. Default value 15.0 for
small animal data you may need to use something smaller such
as 2.0. The threshold is in mm. For this parameter to be active
cluster
should be enabled.
- random_colorsstring
Given multiple tractograms and/or ROIs then each tractogram and/or
ROI will be shown with different color. If no value is provided both
the tractograms and the ROIs will have a different random color
generated from a distinguishable colormap. If the effect should only be
applied to one of the 2 objects, then use the options ‘tracts’ and
‘rois’ for the tractograms and the ROIs respectively.
- bg_colorndarray or list or tuple
Define the background color of the scene. Default is black (0, 0, 0)
- order_transparentbool
Default True. Use depth peeling to sort transparent objects.
If True also enables anti-aliasing.
- length_gtfloat
Clusters with average length greater than length_gt
amount
in mm will be shown.
- length_ltfloat
Clusters with average length less than length_lt
amount in mm
will be shown.
- clusters_gtint
Clusters with size greater than clusters_gt
will be shown.
- clusters_ltint
Clusters with size less than clusters_lt
will be shown.
- world_coordsbool
Show data in their world coordinates (not native voxel coordinates)
Default True.
- interactivebool
Allow user interaction. If False then Horizon goes on stealth mode
and just saves pictures.
- buanbool, optional
Enables BUAN framework visualization. Default is False.
- buan_colorslist, optional
List of colors for bundles.
- roi_imagesbool, optional
Displays binary images as contours. Default is False.
- roi_colorsndarray or list or tuple, optional
Define the color of the roi images. Default is red (1, 0, 0)
- out_pngstring
Filename of saved picture.
- recorded_eventsstring
File path to replay recorded events
- return_showmbool
Return ShowManager object. Used only at Python level. Can be used
for extending Horizon’s cababilities externally and for testing
purposes.
References
[Horizon_ISMRM19]
Garyfallidis E., M-A. Cote, B.Q. Chandio,
S. Fadnavis, J. Guaje, R. Aggarwal, E. St-Onge, K.S. Juneja,
S. Koudoro, D. Reagan, DIPY Horizon: fast, modular, unified and
adaptive visualization, Proceedings of: International Society of
Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
-
class dipy.viz.gmem.GlobalHorizon
Bases: object
-
__init__()
-
class dipy.viz.horizon.app.Horizon(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, out_png='tmp.png', recorded_events=None, return_showm=False, bg_color=(0, 0, 0), order_transparent=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0))
Bases: object
-
__init__(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, out_png='tmp.png', recorded_events=None, return_showm=False, bg_color=(0, 0, 0), order_transparent=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0))
Interactive medical visualization - Invert the Horizon!
Parameters
- tractogramssequence of StatefulTractograms
StatefulTractograms are used for making sure that the coordinate
systems are correct
- imagessequence of tuples
Each tuple contains data and affine
- pamssequence of PeakAndMetrics
Contains peak directions and spherical harmonic coefficients
- clusterbool
Enable QuickBundlesX clustering
- cluster_thrfloat
Distance threshold used for clustering. Default value 15.0 for
small animal data you may need to use something smaller such
as 2.0. The threshold is in mm. For this parameter to be active
cluster
should be enabled.
- random_colorsstring, optional
Given multiple tractograms and/or ROIs then each tractogram and/or
ROI will be shown with a different color. If no value is provided,
both the tractograms and the ROIs will have a different random
color generated from a distinguishable colormap. If the effect
should only be applied to one of the 2 types, then use the
options ‘tracts’ and ‘rois’ for the tractograms and the ROIs
respectively.
- length_gtfloat
Clusters with average length greater than length_gt
amount
in mm will be shown.
- length_ltfloat
Clusters with average length less than length_lt
amount in mm
will be shown.
- clusters_gtint
Clusters with size greater than clusters_gt
will be shown.
- clusters_ltint
Clusters with size less than clusters_lt
will be shown.
- world_coordsbool
Show data in their world coordinates (not native voxel coordinates)
Default True.
- interactivebool
Allow user interaction. If False then Horizon goes on stealth mode
and just saves pictures.
- out_pngstring
Filename of saved picture.
- recorded_eventsstring
File path to replay recorded events
- return_showmbool
Return ShowManager object. Used only at Python level. Can be used
for extending Horizon’s cababilities externally and for testing
purposes.
- bg_colorndarray or list or tuple
Define the background color of the scene.
Default is black (0, 0, 0)
- order_transparentbool
Default True. Use depth peeling to sort transparent objects.
If True also enables anti-aliasing.
- buanbool, optional
Enables BUAN framework visualization. Default is False.
- buan_colorslist, optional
List of colors for bundles.
- roi_imagesbool, optional
Displays binary images as contours. Default is False.
- roi_colorsndarray or list or tuple, optional
Define the colors of the roi images. Default is red (1, 0, 0)
References
[Horizon_ISMRM19]
Garyfallidis E., M-A. Cote, B.Q. Chandio,
S. Fadnavis, J. Guaje, R. Aggarwal, E. St-Onge, K.S. Juneja,
S. Koudoro, D. Reagan, DIPY Horizon: fast, modular, unified and
adaptive visualization, Proceedings of: International Society of
Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
-
build_scene()
-
build_show(scene)
horizon
-
dipy.viz.horizon.app.horizon(tractograms=None, images=None, pams=None, cluster=False, cluster_thr=15.0, random_colors=None, bg_color=(0, 0, 0), order_transparent=True, length_gt=0, length_lt=1000, clusters_gt=0, clusters_lt=10000, world_coords=True, interactive=True, buan=False, buan_colors=None, roi_images=False, roi_colors=(1, 0, 0), out_png='tmp.png', recorded_events=None, return_showm=False)
Interactive medical visualization - Invert the Horizon!
Parameters
- tractogramssequence of StatefulTractograms
StatefulTractograms are used for making sure that the coordinate
systems are correct
- imagessequence of tuples
Each tuple contains data and affine
- pamssequence of PeakAndMetrics
Contains peak directions and spherical harmonic coefficients
- clusterbool
Enable QuickBundlesX clustering
- cluster_thrfloat
Distance threshold used for clustering. Default value 15.0 for
small animal data you may need to use something smaller such
as 2.0. The threshold is in mm. For this parameter to be active
cluster
should be enabled.
- random_colorsstring
Given multiple tractograms and/or ROIs then each tractogram and/or
ROI will be shown with different color. If no value is provided both
the tractograms and the ROIs will have a different random color
generated from a distinguishable colormap. If the effect should only be
applied to one of the 2 objects, then use the options ‘tracts’ and
‘rois’ for the tractograms and the ROIs respectively.
- bg_colorndarray or list or tuple
Define the background color of the scene. Default is black (0, 0, 0)
- order_transparentbool
Default True. Use depth peeling to sort transparent objects.
If True also enables anti-aliasing.
- length_gtfloat
Clusters with average length greater than length_gt
amount
in mm will be shown.
- length_ltfloat
Clusters with average length less than length_lt
amount in mm
will be shown.
- clusters_gtint
Clusters with size greater than clusters_gt
will be shown.
- clusters_ltint
Clusters with size less than clusters_lt
will be shown.
- world_coordsbool
Show data in their world coordinates (not native voxel coordinates)
Default True.
- interactivebool
Allow user interaction. If False then Horizon goes on stealth mode
and just saves pictures.
- buanbool, optional
Enables BUAN framework visualization. Default is False.
- buan_colorslist, optional
List of colors for bundles.
- roi_imagesbool, optional
Displays binary images as contours. Default is False.
- roi_colorsndarray or list or tuple, optional
Define the color of the roi images. Default is red (1, 0, 0)
- out_pngstring
Filename of saved picture.
- recorded_eventsstring
File path to replay recorded events
- return_showmbool
Return ShowManager object. Used only at Python level. Can be used
for extending Horizon’s cababilities externally and for testing
purposes.
References
[Horizon_ISMRM19]
Garyfallidis E., M-A. Cote, B.Q. Chandio,
S. Fadnavis, J. Guaje, R. Aggarwal, E. St-Onge, K.S. Juneja,
S. Koudoro, D. Reagan, DIPY Horizon: fast, modular, unified and
adaptive visualization, Proceedings of: International Society of
Magnetic Resonance in Medicine (ISMRM), Montreal, Canada, 2019.
-
class dipy.viz.horizon.tab.base.HorizonTab
Bases: ABC
-
__init__()
-
abstract build(tab_id, tab_ui)
-
abstract property name
-
class dipy.viz.horizon.tab.base.TabManager(tabs, win_size)
Bases: object
-
__init__(tabs, win_size)
-
reposition(win_size)
-
property tab_ui
build_label
-
dipy.viz.horizon.tab.base.build_label(text, font_size=16, bold=False)
Simple utility function to build labels
Parameters
text : str
font_size : int
bold : bool
Returns
label : TextBlock2D
color_single_slider
-
dipy.viz.horizon.tab.base.color_single_slider(slider)
color_double_slider
-
dipy.viz.horizon.tab.base.color_double_slider(slider)
-
class dipy.viz.horizon.tab.cluster.ClustersTab(clusters_visualizer, threshold)
Bases: HorizonTab
-
__init__(clusters_visualizer, threshold)
-
build(tab_id, tab_ui)
-
property name
-
class dipy.viz.horizon.tab.peak.PeaksTab(peak_actor)
Bases: HorizonTab
-
__init__(peak_actor)
-
build(tab_id, tab_ui)
-
property name
-
class dipy.viz.horizon.tab.roi.ROIsTab(contour_actors)
Bases: HorizonTab
-
__init__(contour_actors)
-
build(tab_id, tab_ui)
-
property name
-
class dipy.viz.horizon.tab.slice.SlicesTab(slices_visualizer, id=0)
Bases: HorizonTab
-
__init__(slices_visualizer, id=0)
-
build(tab_id, tab_ui)
-
property name
-
class dipy.viz.horizon.visualizer.cluster.ClustersVisualizer(show_manager, scene, tractograms, enable_callbacks=True)
Bases: object
-
__init__(show_manager, scene, tractograms, enable_callbacks=True)
-
add_cluster_actors(tract_idx, streamlines, thr, colors)
-
property centroid_actors
-
property cluster_actors
-
property lengths
-
recluster_tractograms(thr)
-
property sizes
-
property tractogram_clusters
-
class dipy.viz.horizon.visualizer.slice.SlicesVisualizer(interactor, scene, data, affine=None, world_coords=False, percentiles=[2, 98])
Bases: object
-
__init__(interactor, scene, data, affine=None, world_coords=False, percentiles=[2, 98])
-
change_volume(prev_idx, next_idx, intensities, visible_slices)
-
property data_shape
-
property intensities_range
-
register_picker_callback(callback)
-
property selected_slices
-
property slice_actors
-
property volume_max
-
property volume_min
build_label
-
dipy.viz.panel.build_label(text, font_size=18, bold=False)
Simple utility function to build labels
Parameters
text : str
font_size : int
bold : bool
Returns
label : TextBlock2D
slicer_panel
-
dipy.viz.panel.slicer_panel(scene, iren, data=None, affine=None, world_coords=False, pam=None, mask=None, mem=<dipy.viz.gmem.GlobalHorizon object>)
Slicer panel with slicer included
Parameters
scene : Scene
iren : Interactor
data : 3d ndarray
affine : 4x4 ndarray
world_coords : bool
If True then the affine is applied.
- peaksPeaksAndMetrics
Default None
mem :
compare_maps
-
dipy.viz.plotting.compare_maps(fits, maps, transpose=None, fit_labels=None, map_labels=None, fit_kwargs=None, map_kwargs=None, filename=None)
Compare one or more scalar maps for different fits or models.
Parameters
- fitslist
List of fits to be compared.
- mapslist
Names of attributes to be compared.
Default: ‘rtop’.
- transposebool, optional
If False, different fits are placed on different rows and different
maps on different columns. If True, the order is transposed. If None,
the figures are placed such that there are more columns than rows.
Default: None.
- fit_labelslist, optional
Labels for the different fitting routines. If None the fits are labeled
by number.
Default: None.
- map_labelslist, optional
Labels for the different attributes. If None the attribute names are
used.
Default: None.
- fit_kwargslist or dict, optional
A dict or list of dicts with imshow options for each fitting routine.
The dicts are passed to imshow as keyword-argument pairs.
Default: {}.
- map_kwargslist or dict, optional
A dict or list of dicts with imshow options for each MAP-MRI scalar.
The dicts are passed to imshow as keyword-argument pairs.
Default: {}.
- filenamestring, optional
Filename where the image will be saved.
Default: None.
compare_qti_maps
-
dipy.viz.plotting.compare_qti_maps(gt, fit1, fit2, mask, maps=('fa', 'ufa'), fitname=('QTI', 'QTI+'), xlimits=([0, 1], [0.4, 1.5]), disprange=([0, 1], [0, 1]), slice=13)
Compare one or more qti derived maps obtained with
different fitting routines.
Parameters
- gtqti fit object
The qti fit to be considered as ground truth
- fit1qti fit object
First qti fit to be compared
- fit2qti fit object
Second qti fit to be compared
- masknp.ndarray
Boolean array indicating which voxels to retain for comparing
the values
- mapsarray-like, optional
QTI invariants to be compared
- fitnamearray-like, optional
Names of the used QTI fitting routines
- xlimitsarray-like, optional
X-Axis limits for the histograms visualization
- disprangearray-like, optional
Display range for maps
- sliceint, optional
Axial brain slice to be visualized
bundle_shape_profile
-
dipy.viz.plotting.bundle_shape_profile(x, shape_profile, std)
Plot bundlewarp bundle shape profile.
Parameters
- xnp.ndarray
Integer array containing x-axis
- shape_profilenp.ndarray
Float array containing bundlewarp displacement magnitudes along the
length of the bundle
- stdnp.ndarray
Float array containing standard deviations
sph_project
-
dipy.viz.projections.sph_project(vertices, val, ax=None, vmin=None, vmax=None, cmap=None, cbar=True, tri=False, boundary=False, **basemap_args)
Draw a signal on a 2D projection of the sphere.
Parameters
- vertices(N,3) ndarray
unit vector points of the sphere
- val: (N) ndarray
Function values.
- axmpl axis, optional
If specified, draw onto this existing axis instead.
- vmin, vmaxfloats
Values to cut the z
cmap : mpl colormap
cbar: Whether to add the color-bar to the figure
triang : Whether to display the plot triangulated as a pseudo-color plot.
boundary : Whether to draw the boundary around the projection
in a black line
Returns
- axaxis
Matplotlib figure axis
Examples
>>> from dipy.data import default_sphere
>>> verts = default_sphere.vertices
>>> ax = sph_project(verts.T, np.random.rand(len(verts.T)))
simple_plot
-
dipy.viz.regtools.simple_plot(file_name, title, x, y, xlabel, ylabel)
Saves the simple plot with given x and y values
Parameters
- file_namestring
file name for saving the plot
- titlestring
title of the plot
- xinteger list
x-axis values to be plotted
- yinteger list
y-axis values to be plotted
- xlabelstring
label for x-axis
- ylablestring
label for y-axis
overlay_images
-
dipy.viz.regtools.overlay_images(img0, img1, title0='', title_mid='', title1='', fname=None, **fig_kwargs)
Plot two images one on top of the other using red and green channels.
Creates a figure containing three images: the first image to the left
plotted on the red channel of a color image, the second to the right
plotted on the green channel of a color image and the two given images on
top of each other using the red channel for the first image and the green
channel for the second one. It is assumed that both images have the same
shape. The intended use of this function is to visually assess the quality
of a registration result.
Parameters
- img0array, shape(R, C)
the image to be plotted on the red channel, to the left of the figure
- img1array, shape(R, C)
the image to be plotted on the green channel, to the right of the
figure
- title0string (optional)
the title to be written on top of the image to the left. By default, no
title is displayed.
- title_midstring (optional)
the title to be written on top of the middle image. By default, no
title is displayed.
- title1string (optional)
the title to be written on top of the image to the right. By default,
no title is displayed.
- fnamestring (optional)
the file name to write the resulting figure. If None (default), the
image is not saved.
fig_kwargs: extra parameters for saving figure, e.g. dpi=300.
draw_lattice_2d
-
dipy.viz.regtools.draw_lattice_2d(nrows, ncols, delta)
Create a regular lattice of nrows x ncols squares.
Creates an image (2D array) of a regular lattice of nrows x ncols squares.
The size of each square is delta x delta pixels (not counting the
separation lines). The lines are one pixel width.
Parameters
- nrowsint
the number of squares to be drawn vertically
- ncolsint
the number of squares to be drawn horizontally
- deltaint
the size of each square of the grid. Each square is delta x delta
pixels
Returns
- latticearray, shape (R, C)
the image (2D array) of the segular lattice. The shape (R, C) of the
array is given by
R = 1 + (delta + 1) * nrows
C = 1 + (delta + 1) * ncols
plot_2d_diffeomorphic_map
-
dipy.viz.regtools.plot_2d_diffeomorphic_map(mapping, delta=10, fname=None, direct_grid_shape=None, direct_grid2world=-1, inverse_grid_shape=None, inverse_grid2world=-1, show_figure=True, **fig_kwargs)
Draw the effect of warping a regular lattice by a diffeomorphic map.
Draws a diffeomorphic map by showing the effect of the deformation on a
regular grid. The resulting figure contains two images: the direct
transformation is plotted to the left, and the inverse transformation is
plotted to the right.
Parameters
- mappingDiffeomorphicMap object
the diffeomorphic map to be drawn
- deltaint, optional
the size (in pixels) of the squares of the regular lattice to be used
to plot the warping effects. Each square will be delta x delta pixels.
By default, the size will be 10 pixels.
- fnamestring, optional
the name of the file the figure will be written to. If None (default),
the figure will not be saved to disk.
- direct_grid_shapetuple, shape (2,), optional
the shape of the grid image after being deformed by the direct
transformation. By default, the shape of the deformed grid is the
same as the grid of the displacement field, which is by default
equal to the shape of the fixed image. In other words, the resulting
deformed grid (deformed by the direct transformation) will normally
have the same shape as the fixed image.
- direct_grid2worldarray, shape (3, 3), optional
the affine transformation mapping the direct grid’s coordinates to
physical space. By default, this transformation will correspond to
the image-to-world transformation corresponding to the default
direct_grid_shape (in general, if users specify a direct_grid_shape,
they should also specify direct_grid2world).
- inverse_grid_shapetuple, shape (2,), optional
the shape of the grid image after being deformed by the inverse
transformation. By default, the shape of the deformed grid under the
inverse transform is the same as the image used as “moving” when
the diffeomorphic map was generated by a registration algorithm
(so it corresponds to the effect of warping the static image towards
the moving).
- inverse_grid2worldarray, shape (3, 3), optional
the affine transformation mapping inverse grid’s coordinates to
physical space. By default, this transformation will correspond to
the image-to-world transformation corresponding to the default
inverse_grid_shape (in general, if users specify an inverse_grid_shape,
they should also specify inverse_grid2world).
- show_figurebool, optional
if True (default), the deformed grids will be plotted using matplotlib,
else the grids are just returned
fig_kwargs: extra parameters for saving figure, e.g. dpi=300.
Returns
- warped_forwardarray
Image with the grid showing the effect of transforming the moving image to
the static image. The shape will be direct_grid_shape if specified,
otherwise the shape of the static image.
- warped_backwardarray
Image with the grid showing the effect of transforming the static image to
the moving image. Shape will be inverse_grid_shape if specified,
otherwise the shape of the moving image.
Notes
The default value for the affine transformation is “-1” to handle the case
in which the user provides “None” as input meaning “identity”. If we used
None as default, we wouldn’t know if the user specifically wants to use
the identity (specifically passing None) or if it was left unspecified,
meaning to use the appropriate default matrix.
plot_slices
-
dipy.viz.regtools.plot_slices(V, slice_indices=None, fname=None, **fig_kwargs)
Plot 3 slices from the given volume: 1 sagittal, 1 coronal and 1 axial
Creates a figure showing the axial, coronal and sagittal slices at the
requested positions of the given volume. The requested slices are specified
by slice_indices.
Parameters
- Varray, shape (S, R, C)
the 3D volume to extract the slices from
- slice_indicesarray, shape (3,) (optional)
the indices of the sagittal (slice_indices[0]), coronal
(slice_indices[1])
and axial (slice_indices[2]) slices to be displayed. If None, the
middle slices along each direction are displayed.
- fnamestring (optional)
the name of the file to save the figure to. If None (default), the
figure is not saved to disk.
fig_kwargs: extra parameters for saving figure, e.g. dpi=300.
overlay_slices
-
dipy.viz.regtools.overlay_slices(L, R, slice_index=None, slice_type=1, ltitle='Left', rtitle='Right', fname=None, **fig_kwargs)
Plot three overlaid slices from the given volumes.
Creates a figure containing three images: the gray scale k-th slice of
the first volume (L) to the left, where k=slice_index, the k-th slice of
the second volume (R) to the right and the k-th slices of the two given
images on top of each other using the red channel for the first volume and
the green channel for the second one. It is assumed that both volumes have
the same shape. The intended use of this function is to visually assess the
quality of a registration result.
Parameters
- Larray, shape (S, R, C)
the first volume to extract the slice from plotted to the left
- Rarray, shape (S, R, C)
the second volume to extract the slice from, plotted to the right
- slice_indexint (optional)
the index of the slices (along the axis given by slice_type) to be
overlaid. If None, the slice along the specified axis is used
- slice_typeint (optional)
the type of slice to be extracted:
0=sagittal, 1=coronal (default), 2=axial.
- ltitlestring (optional)
the string to be written as the title of the left image. By default,
no title is displayed.
- rtitlestring (optional)
the string to be written as the title of the right image. By default,
no title is displayed.
- fnamestring (optional)
the name of the file to write the image to. If None (default), the
figure is not saved to disk.
fig_kwargs: extra parameters for saving figure, e.g. dpi=300.
show_bundles
-
dipy.viz.streamline.show_bundles(bundles, interactive=True, view='sagital', colors=None, linewidth=0.3, save_as=None)
Render bundles to visualize them interactively or save them into a png.
The function allows to just render the bundles in an interactive plot or
to export them into a png file.
Parameters
- bundleslist
Bundles to be rendered.
- interactiveboolean, optional
If True a 3D interactive rendering is created. Default is True.
- viewstr, optional
Viewing angle. Supported options: ‘sagital’,’axial’ and ‘coronal’.
Default is ‘sagital’.
- colorslist, optional
Colors to be used for each bundle. If None default colors are used.
- linewidthfloat, optional
Width of each rendered streamline. Default is 0.3.
- save_asstr, optional
If not None rendered scene is stored in a png file with that name.
Default is None.
viz_two_bundles
-
dipy.viz.streamline.viz_two_bundles(b1, b2, fname, c1=(1, 0, 0), c2=(0, 1, 0), interactive=False)
Render and plot two bundles to visualize them.
Parameters
- b1Streamlines
Bundle one to be rendered.
- b2Streamlines
Bundle two to be rendered.
- fname: str
Rendered scene is stored in a png file with that name.
- C1tuple, optional
Color to be used for first bundle. Default red.
- C2tuple, optional
Color to be used for second bundle. Default green.
- interactiveboolean, optional
If True a 3D interactive rendering is created. Default is True.
viz_vector_field
-
dipy.viz.streamline.viz_vector_field(points_aligned, directions, colors, offsets, fname, bundle=None, interactive=False)
Render and plot vector field.
Parameters
- points_alignedList
List containing starting positions of vectors.
- directionsList
List containing unitary directions of vectors.
- colorsList
List containing colors for each vector.
- offsetsList
List containing vector field modules.
- fname: str
Rendered scene is stored in a png file with that name.
- bundleStreamlines, optional
Bundle to be rendered with vector field (Default None).
- interactiveboolean, optional
If True a 3D interactive rendering is created. Default is True.
viz_displacement_mag
-
dipy.viz.streamline.viz_displacement_mag(bundle, offsets, fname, interactive=False)
Render and plot displacement magnitude over the bundle.
Parameters
- bundleStreamlines,
Bundle to be rendered.
- offsetsList
List containing displacement magnitdues per point on the bundle.
- fname: str
Rendered scene is stored in a png file with that name.
- interactiveboolean, optional
If True a 3D interactive rendering is created. Default is True.