sims
Module: sims.phantom
add_noise (vol[, snr, S0, noise_type])
|
Add noise of specified distribution to a 4D array. |
diff2eigenvectors (dx, dy, dz)
|
numerical derivatives 2 eigenvectors |
orbital_phantom ([gtab, evals, func, t, ...])
|
Create a phantom based on a 3-D orbit f(t) -> (x,y,z) . |
Module: sims.voxel
diffusion_evals
|
ndarray(shape, dtype=float, buffer=None, offset=0, |
add_noise (signal, snr, S0[, noise_type])
|
Add noise of specified distribution to the signal from a single voxel. |
sticks_and_ball (gtab[, d, S0, angles, ...])
|
Simulate the signal for a Sticks & Ball model. |
callaghan_perpendicular (q, radius)
|
Calculates the perpendicular diffusion signal E(q) in a cylinder of radius R using the Soderman model [1]_. |
gaussian_parallel (q, tau[, D])
|
Calculates the parallel Gaussian diffusion signal. |
cylinders_and_ball_soderman (gtab, tau[, ...])
|
Calculates the three-dimensional signal attenuation E(q) originating from within a cylinder of radius R using the Soderman approximation [1]_. |
single_tensor (gtab[, S0, evals, evecs, snr])
|
Simulate diffusion-weighted signals with a single tensor. |
multi_tensor (gtab, mevals[, S0, angles, ...])
|
Simulate a Multi-Tensor signal. |
multi_tensor_dki (gtab, mevals[, S0, angles, ...])
|
Simulate the diffusion-weight signal, diffusion and kurtosis tensors based on the DKI model |
kurtosis_element (D_comps, frac, ind_i, ...)
|
Computes the diffusion kurtosis tensor element (with indexes i, j, k and l) based on the individual diffusion tensor components of a multicompartmental model. |
dki_signal (gtab, dt, kt[, S0, snr])
|
Simulated signal based on the diffusion and diffusion kurtosis tensors of a single voxel. |
single_tensor_odf (r[, evals, evecs])
|
Simulated ODF with a single tensor. |
all_tensor_evecs (e0)
|
Given the principle tensor axis, return the array of all eigenvectors column-wise (or, the rotation matrix that orientates the tensor). |
multi_tensor_odf (odf_verts, mevals, angles, ...)
|
Simulate a Multi-Tensor ODF. |
single_tensor_rtop ([evals, tau])
|
Simulate a Single-Tensor rtop. |
multi_tensor_rtop (mf[, mevals, tau])
|
Simulate a Multi-Tensor rtop. |
single_tensor_pdf (r[, evals, evecs, tau])
|
Simulated ODF with a single tensor. |
multi_tensor_pdf (pdf_points, mevals, angles, ...)
|
Simulate a Multi-Tensor ODF. |
single_tensor_msd ([evals, tau])
|
Simulate a Multi-Tensor rtop. |
multi_tensor_msd (mf[, mevals, tau])
|
Simulate a Multi-Tensor rtop. |
add_noise
-
dipy.sims.phantom.add_noise(vol, snr=1.0, S0=None, noise_type='rician')
Add noise of specified distribution to a 4D array.
Parameters
- volarray, shape (X,Y,Z,W)
Diffusion measurements in W directions at each (X, Y, Z)
voxel
position.
- snrfloat, optional
The desired signal-to-noise ratio. (See notes below.)
- S0float, optional
Reference signal for specifying snr (defaults to 1).
- noise_typestring, optional
The distribution of noise added. Can be either ‘gaussian’ for Gaussian
distributed noise, ‘rician’ for Rice-distributed noise (default) or
‘rayleigh’ for a Rayleigh distribution.
Returns
- volarray, same shape as vol
Volume with added noise.
Notes
SNR is defined here, following [1]_, as S0 / sigma
, where sigma
is
the standard deviation of the two Gaussian distributions forming the real
and imaginary components of the Rician noise distribution (see [2]_).
Examples
>>> signal = np.arange(800).reshape(2, 2, 2, 100)
>>> signal_w_noise = add_noise(signal, snr=10, noise_type='rician')
diff2eigenvectors
-
dipy.sims.phantom.diff2eigenvectors(dx, dy, dz)
numerical derivatives 2 eigenvectors
orbital_phantom
-
dipy.sims.phantom.orbital_phantom(gtab=None, evals=array([0.0015, 0.0004, 0.0004]), func=None, t=array([0., 0.00628947, 0.01257895, 0.01886842, 0.0251579, 0.03144737, 0.03773685, 0.04402632, 0.0503158, 0.05660527, 0.06289475, 0.06918422, 0.0754737, 0.08176317, 0.08805265, 0.09434212, 0.1006316, 0.10692107, 0.11321055, 0.11950002, 0.1257895, 0.13207897, 0.13836845, 0.14465792, 0.15094739, 0.15723687, 0.16352634, 0.16981582, 0.17610529, 0.18239477, 0.18868424, 0.19497372, 0.20126319, 0.20755267, 0.21384214, 0.22013162, 0.22642109, 0.23271057, 0.23900004, 0.24528952, 0.25157899, 0.25786847, 0.26415794, 0.27044742, 0.27673689, 0.28302637, 0.28931584, 0.29560531, 0.30189479, 0.30818426, 0.31447374, 0.32076321, 0.32705269, 0.33334216, 0.33963164, 0.34592111, 0.35221059, 0.35850006, 0.36478954, 0.37107901, 0.37736849, 0.38365796, 0.38994744, 0.39623691, 0.40252639, 0.40881586, 0.41510534, 0.42139481, 0.42768429, 0.43397376, 0.44026323, 0.44655271, 0.45284218, 0.45913166, 0.46542113, 0.47171061, 0.47800008, 0.48428956, 0.49057903, 0.49686851, 0.50315798, 0.50944746, 0.51573693, 0.52202641, 0.52831588, 0.53460536, 0.54089483, 0.54718431, 0.55347378, 0.55976326, 0.56605273, 0.57234221, 0.57863168, 0.58492115, 0.59121063, 0.5975001, 0.60378958, 0.61007905, 0.61636853, 0.622658, 0.62894748, 0.63523695, 0.64152643, 0.6478159, 0.65410538, 0.66039485, 0.66668433, 0.6729738, 0.67926328, 0.68555275, 0.69184223, 0.6981317, 0.70442118, 0.71071065, 0.71700013, 0.7232896, 0.72957907, 0.73586855, 0.74215802, 0.7484475, 0.75473697, 0.76102645, 0.76731592, 0.7736054, 0.77989487, 0.78618435, 0.79247382, 0.7987633, 0.80505277, 0.81134225, 0.81763172, 0.8239212, 0.83021067, 0.83650015, 0.84278962, 0.8490791, 0.85536857, 0.86165805, 0.86794752, 0.87423699, 0.88052647, 0.88681594, 0.89310542, 0.89939489, 0.90568437, 0.91197384, 0.91826332, 0.92455279, 0.93084227, 0.93713174, 0.94342122, 0.94971069, 0.95600017, 0.96228964, 0.96857912, 0.97486859, 0.98115807, 0.98744754, 0.99373702, 1.00002649, 1.00631597, 1.01260544, 1.01889491, 1.02518439, 1.03147386, 1.03776334, 1.04405281, 1.05034229, 1.05663176, 1.06292124, 1.06921071, 1.07550019, 1.08178966, 1.08807914, 1.09436861, 1.10065809, 1.10694756, 1.11323704, 1.11952651, 1.12581599, 1.13210546, 1.13839494, 1.14468441, 1.15097389, 1.15726336, 1.16355283, 1.16984231, 1.17613178, 1.18242126, 1.18871073, 1.19500021, 1.20128968, 1.20757916, 1.21386863, 1.22015811, 1.22644758, 1.23273706, 1.23902653, 1.24531601, 1.25160548, 1.25789496, 1.26418443, 1.27047391, 1.27676338, 1.28305286, 1.28934233, 1.29563181, 1.30192128, 1.30821075, 1.31450023, 1.3207897, 1.32707918, 1.33336865, 1.33965813, 1.3459476, 1.35223708, 1.35852655, 1.36481603, 1.3711055, 1.37739498, 1.38368445, 1.38997393, 1.3962634, 1.40255288, 1.40884235, 1.41513183, 1.4214213, 1.42771078, 1.43400025, 1.44028973, 1.4465792, 1.45286867, 1.45915815, 1.46544762, 1.4717371, 1.47802657, 1.48431605, 1.49060552, 1.496895, 1.50318447, 1.50947395, 1.51576342, 1.5220529, 1.52834237, 1.53463185, 1.54092132, 1.5472108, 1.55350027, 1.55978975, 1.56607922, 1.5723687, 1.57865817, 1.58494765, 1.59123712, 1.59752659, 1.60381607, 1.61010554, 1.61639502, 1.62268449, 1.62897397, 1.63526344, 1.64155292, 1.64784239, 1.65413187, 1.66042134, 1.66671082, 1.67300029, 1.67928977, 1.68557924, 1.69186872, 1.69815819, 1.70444767, 1.71073714, 1.71702662, 1.72331609, 1.72960557, 1.73589504, 1.74218451, 1.74847399, 1.75476346, 1.76105294, 1.76734241, 1.77363189, 1.77992136, 1.78621084, 1.79250031, 1.79878979, 1.80507926, 1.81136874, 1.81765821, 1.82394769, 1.83023716, 1.83652664, 1.84281611, 1.84910559, 1.85539506, 1.86168454, 1.86797401, 1.87426349, 1.88055296, 1.88684243, 1.89313191, 1.89942138, 1.90571086, 1.91200033, 1.91828981, 1.92457928, 1.93086876, 1.93715823, 1.94344771, 1.94973718, 1.95602666, 1.96231613, 1.96860561, 1.97489508, 1.98118456, 1.98747403, 1.99376351, 2.00005298, 2.00634246, 2.01263193, 2.01892141, 2.02521088, 2.03150035, 2.03778983, 2.0440793, 2.05036878, 2.05665825, 2.06294773, 2.0692372, 2.07552668, 2.08181615, 2.08810563, 2.0943951, 2.10068458, 2.10697405, 2.11326353, 2.119553, 2.12584248, 2.13213195, 2.13842143, 2.1447109, 2.15100038, 2.15728985, 2.16357932, 2.1698688, 2.17615827, 2.18244775, 2.18873722, 2.1950267, 2.20131617, 2.20760565, 2.21389512, 2.2201846, 2.22647407, 2.23276355, 2.23905302, 2.2453425, 2.25163197, 2.25792145, 2.26421092, 2.2705004, 2.27678987, 2.28307935, 2.28936882, 2.2956583, 2.30194777, 2.30823724, 2.31452672, 2.32081619, 2.32710567, 2.33339514, 2.33968462, 2.34597409, 2.35226357, 2.35855304, 2.36484252, 2.37113199, 2.37742147, 2.38371094, 2.39000042, 2.39628989, 2.40257937, 2.40886884, 2.41515832, 2.42144779, 2.42773727, 2.43402674, 2.44031622, 2.44660569, 2.45289516, 2.45918464, 2.46547411, 2.47176359, 2.47805306, 2.48434254, 2.49063201, 2.49692149, 2.50321096, 2.50950044, 2.51578991, 2.52207939, 2.52836886, 2.53465834, 2.54094781, 2.54723729, 2.55352676, 2.55981624, 2.56610571, 2.57239519, 2.57868466, 2.58497414, 2.59126361, 2.59755308, 2.60384256, 2.61013203, 2.61642151, 2.62271098, 2.62900046, 2.63528993, 2.64157941, 2.64786888, 2.65415836, 2.66044783, 2.66673731, 2.67302678, 2.67931626, 2.68560573, 2.69189521, 2.69818468, 2.70447416, 2.71076363, 2.71705311, 2.72334258, 2.72963206, 2.73592153, 2.742211, 2.74850048, 2.75478995, 2.76107943, 2.7673689, 2.77365838, 2.77994785, 2.78623733, 2.7925268, 2.79881628, 2.80510575, 2.81139523, 2.8176847, 2.82397418, 2.83026365, 2.83655313, 2.8428426, 2.84913208, 2.85542155, 2.86171103, 2.8680005, 2.87428998, 2.88057945, 2.88686892, 2.8931584, 2.89944787, 2.90573735, 2.91202682, 2.9183163, 2.92460577, 2.93089525, 2.93718472, 2.9434742, 2.94976367, 2.95605315, 2.96234262, 2.9686321, 2.97492157, 2.98121105, 2.98750052, 2.99379, 3.00007947, 3.00636895, 3.01265842, 3.0189479, 3.02523737, 3.03152684, 3.03781632, 3.04410579, 3.05039527, 3.05668474, 3.06297422, 3.06926369, 3.07555317, 3.08184264, 3.08813212, 3.09442159, 3.10071107, 3.10700054, 3.11329002, 3.11957949, 3.12586897, 3.13215844, 3.13844792, 3.14473739, 3.15102687, 3.15731634, 3.16360582, 3.16989529, 3.17618476, 3.18247424, 3.18876371, 3.19505319, 3.20134266, 3.20763214, 3.21392161, 3.22021109, 3.22650056, 3.23279004, 3.23907951, 3.24536899, 3.25165846, 3.25794794, 3.26423741, 3.27052689, 3.27681636, 3.28310584, 3.28939531, 3.29568479, 3.30197426, 3.30826374, 3.31455321, 3.32084268, 3.32713216, 3.33342163, 3.33971111, 3.34600058, 3.35229006, 3.35857953, 3.36486901, 3.37115848, 3.37744796, 3.38373743, 3.39002691, 3.39631638, 3.40260586, 3.40889533, 3.41518481, 3.42147428, 3.42776376, 3.43405323, 3.44034271, 3.44663218, 3.45292166, 3.45921113, 3.4655006, 3.47179008, 3.47807955, 3.48436903, 3.4906585, 3.49694798, 3.50323745, 3.50952693, 3.5158164, 3.52210588, 3.52839535, 3.53468483, 3.5409743, 3.54726378, 3.55355325, 3.55984273, 3.5661322, 3.57242168, 3.57871115, 3.58500063, 3.5912901, 3.59757958, 3.60386905, 3.61015852, 3.616448, 3.62273747, 3.62902695, 3.63531642, 3.6416059, 3.64789537, 3.65418485, 3.66047432, 3.6667638, 3.67305327, 3.67934275, 3.68563222, 3.6919217, 3.69821117, 3.70450065, 3.71079012, 3.7170796, 3.72336907, 3.72965855, 3.73594802, 3.7422375, 3.74852697, 3.75481644, 3.76110592, 3.76739539, 3.77368487, 3.77997434, 3.78626382, 3.79255329, 3.79884277, 3.80513224, 3.81142172, 3.81771119, 3.82400067, 3.83029014, 3.83657962, 3.84286909, 3.84915857, 3.85544804, 3.86173752, 3.86802699, 3.87431647, 3.88060594, 3.88689542, 3.89318489, 3.89947436, 3.90576384, 3.91205331, 3.91834279, 3.92463226, 3.93092174, 3.93721121, 3.94350069, 3.94979016, 3.95607964, 3.96236911, 3.96865859, 3.97494806, 3.98123754, 3.98752701, 3.99381649, 4.00010596, 4.00639544, 4.01268491, 4.01897439, 4.02526386, 4.03155334, 4.03784281, 4.04413228, 4.05042176, 4.05671123, 4.06300071, 4.06929018, 4.07557966, 4.08186913, 4.08815861, 4.09444808, 4.10073756, 4.10702703, 4.11331651, 4.11960598, 4.12589546, 4.13218493, 4.13847441, 4.14476388, 4.15105336, 4.15734283, 4.16363231, 4.16992178, 4.17621126, 4.18250073, 4.1887902, 4.19507968, 4.20136915, 4.20765863, 4.2139481, 4.22023758, 4.22652705, 4.23281653, 4.239106, 4.24539548, 4.25168495, 4.25797443, 4.2642639, 4.27055338, 4.27684285, 4.28313233, 4.2894218, 4.29571128, 4.30200075, 4.30829023, 4.3145797, 4.32086918, 4.32715865, 4.33344812, 4.3397376, 4.34602707, 4.35231655, 4.35860602, 4.3648955, 4.37118497, 4.37747445, 4.38376392, 4.3900534, 4.39634287, 4.40263235, 4.40892182, 4.4152113, 4.42150077, 4.42779025, 4.43407972, 4.4403692, 4.44665867, 4.45294815, 4.45923762, 4.4655271, 4.47181657, 4.47810604, 4.48439552, 4.49068499, 4.49697447, 4.50326394, 4.50955342, 4.51584289, 4.52213237, 4.52842184, 4.53471132, 4.54100079, 4.54729027, 4.55357974, 4.55986922, 4.56615869, 4.57244817, 4.57873764, 4.58502712, 4.59131659, 4.59760607, 4.60389554, 4.61018502, 4.61647449, 4.62276396, 4.62905344, 4.63534291, 4.64163239, 4.64792186, 4.65421134, 4.66050081, 4.66679029, 4.67307976, 4.67936924, 4.68565871, 4.69194819, 4.69823766, 4.70452714, 4.71081661, 4.71710609, 4.72339556, 4.72968504, 4.73597451, 4.74226399, 4.74855346, 4.75484294, 4.76113241, 4.76742188, 4.77371136, 4.78000083, 4.78629031, 4.79257978, 4.79886926, 4.80515873, 4.81144821, 4.81773768, 4.82402716, 4.83031663, 4.83660611, 4.84289558, 4.84918506, 4.85547453, 4.86176401, 4.86805348, 4.87434296, 4.88063243, 4.88692191, 4.89321138, 4.89950086, 4.90579033, 4.9120798, 4.91836928, 4.92465875, 4.93094823, 4.9372377, 4.94352718, 4.94981665, 4.95610613, 4.9623956, 4.96868508, 4.97497455, 4.98126403, 4.9875535, 4.99384298, 5.00013245, 5.00642193, 5.0127114, 5.01900088, 5.02529035, 5.03157983, 5.0378693, 5.04415878, 5.05044825, 5.05673772, 5.0630272, 5.06931667, 5.07560615, 5.08189562, 5.0881851, 5.09447457, 5.10076405, 5.10705352, 5.113343, 5.11963247, 5.12592195, 5.13221142, 5.1385009, 5.14479037, 5.15107985, 5.15736932, 5.1636588, 5.16994827, 5.17623775, 5.18252722, 5.1888167, 5.19510617, 5.20139564, 5.20768512, 5.21397459, 5.22026407, 5.22655354, 5.23284302, 5.23913249, 5.24542197, 5.25171144, 5.25800092, 5.26429039, 5.27057987, 5.27686934, 5.28315882, 5.28944829, 5.29573777, 5.30202724, 5.30831672, 5.31460619, 5.32089567, 5.32718514, 5.33347462, 5.33976409, 5.34605356, 5.35234304, 5.35863251, 5.36492199, 5.37121146, 5.37750094, 5.38379041, 5.39007989, 5.39636936, 5.40265884, 5.40894831, 5.41523779, 5.42152726, 5.42781674, 5.43410621, 5.44039569, 5.44668516, 5.45297464, 5.45926411, 5.46555359, 5.47184306, 5.47813254, 5.48442201, 5.49071148, 5.49700096, 5.50329043, 5.50957991, 5.51586938, 5.52215886, 5.52844833, 5.53473781, 5.54102728, 5.54731676, 5.55360623, 5.55989571, 5.56618518, 5.57247466, 5.57876413, 5.58505361, 5.59134308, 5.59763256, 5.60392203, 5.61021151, 5.61650098, 5.62279046, 5.62907993, 5.6353694, 5.64165888, 5.64794835, 5.65423783, 5.6605273, 5.66681678, 5.67310625, 5.67939573, 5.6856852, 5.69197468, 5.69826415, 5.70455363, 5.7108431, 5.71713258, 5.72342205, 5.72971153, 5.736001, 5.74229048, 5.74857995, 5.75486943, 5.7611589, 5.76744838, 5.77373785, 5.78002732, 5.7863168, 5.79260627, 5.79889575, 5.80518522, 5.8114747, 5.81776417, 5.82405365, 5.83034312, 5.8366326, 5.84292207, 5.84921155, 5.85550102, 5.8617905, 5.86807997, 5.87436945, 5.88065892, 5.8869484, 5.89323787, 5.89952735, 5.90581682, 5.9121063, 5.91839577, 5.92468524, 5.93097472, 5.93726419, 5.94355367, 5.94984314, 5.95613262, 5.96242209, 5.96871157, 5.97500104, 5.98129052, 5.98757999, 5.99386947, 6.00015894, 6.00644842, 6.01273789, 6.01902737, 6.02531684, 6.03160632, 6.03789579, 6.04418527, 6.05047474, 6.05676422, 6.06305369, 6.06934316, 6.07563264, 6.08192211, 6.08821159, 6.09450106, 6.10079054, 6.10708001, 6.11336949, 6.11965896, 6.12594844, 6.13223791, 6.13852739, 6.14481686, 6.15110634, 6.15739581, 6.16368529, 6.16997476, 6.17626424, 6.18255371, 6.18884319, 6.19513266, 6.20142214, 6.20771161, 6.21400108, 6.22029056, 6.22658003, 6.23286951, 6.23915898, 6.24544846, 6.25173793, 6.25802741, 6.26431688, 6.27060636, 6.27689583, 6.28318531]), datashape=(64, 64, 64, 65), origin=(32, 32, 32), scale=(25, 25, 25), angles=array([0., 0.2026834, 0.40536679, 0.60805019, 0.81073359, 1.01341699, 1.21610038, 1.41878378, 1.62146718, 1.82415057, 2.02683397, 2.22951737, 2.43220076, 2.63488416, 2.83756756, 3.04025096, 3.24293435, 3.44561775, 3.64830115, 3.85098454, 4.05366794, 4.25635134, 4.45903473, 4.66171813, 4.86440153, 5.06708493, 5.26976832, 5.47245172, 5.67513512, 5.87781851, 6.08050191, 6.28318531]), radii=array([0.2, 0.56, 0.92, 1.28, 1.64, 2.]), S0=100.0, snr=None)
Create a phantom based on a 3-D orbit f(t) -> (x,y,z)
.
Parameters
- gtabGradientTable
Gradient table of measurement directions.
- evalsarray, shape (3,)
Tensor eigenvalues.
- funcuser defined function f(t)->(x,y,z)
It could be desirable for -1=<x,y,z <=1
.
If None creates a circular orbit.
- tarray, shape (K,)
Represents time for the orbit. Default is
np.linspace(0, 2 * np.pi, 1000)
.
- datashapearray, shape (X,Y,Z,W)
Size of the output simulated data
- origintuple, shape (3,)
Define the center for the volume
- scaletuple, shape (3,)
Scale the function before applying to the grid
- anglesarray, shape (L,)
Density angle points, always perpendicular to the first eigen vector
Default np.linspace(0, 2 * np.pi, 32).
- radiiarray, shape (M,)
Thickness radii. Default np.linspace(0.2, 2, 6)
.
angles and radii define the total thickness options
- S0double, optional
Maximum simulated signal. Default 100.
- snrfloat, optional
The signal to noise ratio set to apply Rician noise to the data.
Default is to not add noise at all.
Returns
data : array, shape (datashape)
Examples
>>> def f(t):
... x = np.sin(t)
... y = np.cos(t)
... z = np.linspace(-1, 1, len(x))
... return x, y, z
>>> data = orbital_phantom(func=f)
diffusion_evals
-
dipy.sims.voxel.diffusion_evals()
- ndarray(shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)
An array object represents a multidimensional, homogeneous array
of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes it
occupies in memory, whether it is an integer, a floating point number,
or something else, etc.)
Arrays should be constructed using array, zeros or empty (refer
to the See Also section below). The parameters given here refer to
a low-level method (ndarray(…)) for instantiating an array.
For more information, refer to the numpy module and examine the
methods and attributes of an array.
Parameters
(for the __new__ method; see Notes below)
- shapetuple of ints
Shape of created array.
- dtypedata-type, optional
Any object that can be interpreted as a numpy data type.
- bufferobject exposing buffer interface, optional
Used to fill the array with data.
- offsetint, optional
Offset of array data in buffer.
- stridestuple of ints, optional
Strides of data in memory.
- order{‘C’, ‘F’}, optional
Row-major (C-style) or column-major (Fortran-style) order.
Attributes
- Tndarray
Transpose of the array.
- databuffer
The array’s elements, in memory.
- dtypedtype object
Describes the format of the elements in the array.
- flagsdict
Dictionary containing information related to memory use, e.g.,
‘C_CONTIGUOUS’, ‘OWNDATA’, ‘WRITEABLE’, etc.
- flatnumpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., x.flat = 3
(See ndarray.flat for
assignment examples; TODO).
- imagndarray
Imaginary part of the array.
- realndarray
Real part of the array.
- sizeint
Number of elements in the array.
- itemsizeint
The memory use of each array element in bytes.
- nbytesint
The total number of bytes required to store the array data,
i.e., itemsize * size
.
- ndimint
The array’s number of dimensions.
- shapetuple of ints
Shape of the array.
- stridestuple of ints
The step-size required to move from one element to the next in
memory. For example, a contiguous (3, 4)
array of type
int16
in C-order has strides (8, 2)
. This implies that
to move from element to element in memory requires jumps of 2 bytes.
To move from row-to-row, one needs to jump 8 bytes at a time
(2 * 4
).
- ctypesctypes object
Class containing properties of the array needed for interaction
with ctypes.
- basendarray
If the array is a view into another array, that array is its base
(unless that array is also a view). The base array is where the
array data is actually stored.
See Also
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged (i.e.,
dtype : Create a data-type.
numpy.typing.NDArray : An ndarray alias generic
w.r.t. its dtype.type <numpy.dtype.type>.
Notes
There are two modes of creating an array using __new__
:
If buffer is None, then only shape, dtype, and order
are used.
If buffer is an object exposing the buffer interface, then
all keywords are interpreted.
No __init__
method is needed because the array is fully initialized
after the __new__
method.
Examples
These examples illustrate the low-level ndarray constructor. Refer
to the See Also section above for easier ways of constructing an
ndarray.
First mode, buffer is None:
>>> np.ndarray(shape=(2,2), dtype=float, order='F')
array([[0.0e+000, 0.0e+000], # random
[ nan, 2.5e-323]])
Second mode:
>>> np.ndarray((2,), buffer=np.array([1,2,3]),
... offset=np.int_().itemsize,
... dtype=int) # offset = 1*itemsize, i.e. skip first element
array([2, 3])
add_noise
-
dipy.sims.voxel.add_noise(signal, snr, S0, noise_type='rician')
Add noise of specified distribution to the signal from a single voxel.
Parameters
- signal1-d ndarray
The signal in the voxel.
- snrfloat
The desired signal-to-noise ratio. (See notes below.)
If snr is None, return the signal as-is.
- S0float
Reference signal for specifying snr.
- noise_typestring, optional
The distribution of noise added. Can be either ‘gaussian’ for Gaussian
distributed noise, ‘rician’ for Rice-distributed noise (default) or
‘rayleigh’ for a Rayleigh distribution.
Returns
- signalarray, same shape as the input
Signal with added noise.
Notes
SNR is defined here, following [1]_, as S0 / sigma
, where sigma
is
the standard deviation of the two Gaussian distributions forming the real
and imaginary components of the Rician noise distribution (see [2]_).
Examples
>>> signal = np.arange(800).reshape(2, 2, 2, 100)
>>> signal_w_noise = add_noise(signal, 10., 100., noise_type='rician')
sticks_and_ball
-
dipy.sims.voxel.sticks_and_ball(gtab, d=0.0015, S0=1.0, angles=((0, 0), (90, 0)), fractions=(35, 35), snr=20)
Simulate the signal for a Sticks & Ball model.
Parameters
- gtabGradientTable
Signal measurement directions.
- dfloat, optional
Diffusivity value.
- S0float, optional
Unweighted signal value.
- anglesarray (K, 2) or (K, 3), optional
List of K polar angles (in degrees) for the sticks or array of K
sticks as unit vectors.
- fractionsarray-like, optional
Percentage of each stick. Remainder to 100 specifies isotropic
component.
- snrfloat, optional
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
- S(N,) ndarray
Simulated signal.
- sticks(M,3)
Sticks in cartesian coordinates.
callaghan_perpendicular
-
dipy.sims.voxel.callaghan_perpendicular(q, radius)
Calculates the perpendicular diffusion signal E(q) in a cylinder of
radius R using the Soderman model [1]_. Assumes that the pulse length
is infinitely short and the diffusion time is infinitely long.
Parameters
- qarray, shape (N,)
q-space value in 1/mm
- radiusfloat
cylinder radius in mm
Returns
- Earray, shape (N,)
signal attenuation
gaussian_parallel
-
dipy.sims.voxel.gaussian_parallel(q, tau, D=0.0007)
Calculates the parallel Gaussian diffusion signal.
Parameters
- qarray, shape (N,)
q-space value in 1/mm
- taufloat
diffusion time in s
- Dfloat, optional
diffusion constant
Returns
- Earray, shape (N,)
signal attenuation
cylinders_and_ball_soderman
-
dipy.sims.voxel.cylinders_and_ball_soderman(gtab, tau, radii=(0.005, 0.005), D=0.0007, S0=1.0, angles=((0, 0), (90, 0)), fractions=(35, 35), snr=20)
Calculates the three-dimensional signal attenuation E(q) originating
from within a cylinder of radius R using the Soderman approximation [1]_.
The diffusion signal is assumed to be separable perpendicular and parallel
to the cylinder axis [2]_.
This function is basically an extension of the ball and stick model.
Setting the radius to zero makes them equivalent.
Parameters
- gtabGradientTable
Signal measurement directions.
- taufloat
diffusion time in s
- radiiarray-like, optional
cylinder radius in mm
- Dfloat, optional
diffusion constant
- S0float, optional
Unweighted signal value.
- anglesarray (K, 2) or (K, 3), optional
List of K polar angles (in degrees) for the sticks or array of K
sticks as unit vectors.
- fractionsarray-like, optional
Percentage of each stick. Remainder to 100 specifies isotropic
component.
- snrfloat, optional
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
- Earray, shape (N,)
signal attenuation
single_tensor
-
dipy.sims.voxel.single_tensor(gtab, S0=1, evals=None, evecs=None, snr=None)
Simulate diffusion-weighted signals with a single tensor.
Parameters
- gtabGradientTable
Table with information of b-values and gradient directions g.
Note that if gtab has a btens attribute, simulations will be performed
according to the given b-tensor B information.
- S0double, optional
Strength of signal in the presence of no diffusion gradient (also
called the b=0
value).
- evals(3,) ndarray, optional
Eigenvalues of the diffusion tensor. By default, values typical for
prolate white matter are used.
- evecs(3, 3) ndarray, optional
Eigenvectors of the tensor. You can also think of this as a rotation
matrix that transforms the direction of the tensor. The eigenvectors
need to be column wise.
- snrfloat, optional
Signal to noise ratio, assuming Rician noise. None implies no noise.
Returns
- S(N,) ndarray
- Simulated signal:
S(b, g) = S_0 e^(-b g^T R D R.T g)
, if gtab.tens=None
S(B) = S_0 e^(-B:D)
, if gtab.tens information is given
multi_tensor
-
dipy.sims.voxel.multi_tensor(gtab, mevals, S0=1.0, angles=((0, 0), (90, 0)), fractions=(50, 50), snr=20)
Simulate a Multi-Tensor signal.
Parameters
- gtabGradientTable
Table with information of b-values and gradient directions.
Note that if gtab has a btens attribute, simulations will be performed
according to the given b-tensor information.
- mevalsarray (K, 3)
each tensor’s eigenvalues in each row
- S0float, optional
Unweighted signal value (b0 signal).
- anglesarray (K, 2) or (K, 3), optional
List of K tensor directions in polar angles (in degrees) or unit
vectors
- fractionsarray-like, optional
Percentage of the contribution of each tensor. The sum of fractions
should be equal to 100%.
- snrfloat, optional
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
- S(N,) ndarray
Simulated signal.
- sticks(M,3)
Sticks in cartesian coordinates.
Examples
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor
>>> from dipy.data import get_fnames
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_fnames('small_101D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> gtab = gradient_table(bvals, bvecs)
>>> mevals=np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> e0 = np.array([1, 0, 0.])
>>> e1 = np.array([0., 1, 0])
>>> S = multi_tensor(gtab, mevals)
multi_tensor_dki
-
dipy.sims.voxel.multi_tensor_dki(gtab, mevals, S0=1.0, angles=((90.0, 0.0), (90.0, 0.0)), fractions=(50, 50), snr=20)
Simulate the diffusion-weight signal, diffusion and kurtosis tensors
based on the DKI model
Parameters
gtab : GradientTable
mevals : array (K, 3)
eigenvalues of the diffusion tensor for each individual compartment
- S0float (optional)
Unweighted signal value (b0 signal).
- anglesarray (K,2) or (K,3) (optional)
List of K tensor directions of the diffusion tensor of each compartment
in polar angles (in degrees) or unit vectors
- fractionsfloat (K,) (optional)
Percentage of the contribution of each tensor. The sum of fractions
should be equal to 100%.
- snrfloat (optional)
Signal to noise ratio, assuming Rician noise. If set to None, no
noise is added.
Returns
- S(N,) ndarray
Simulated signal based on the DKI model.
- dt(6,)
elements of the diffusion tensor.
- kt(15,)
elements of the kurtosis tensor.
Notes
Simulations are based on multicompartmental models which assumes that
tissue is well described by impermeable diffusion compartments
characterized by their only diffusion tensor. Since simulations are based
on the DKI model, coefficients larger than the fourth order of the signal’s
taylor expansion approximation are neglected.
Examples
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor_dki
>>> from dipy.data import get_fnames
>>> from dipy.core.gradients import gradient_table
>>> from dipy.io.gradients import read_bvals_bvecs
>>> fimg, fbvals, fbvecs = get_fnames('small_64D')
>>> bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
>>> bvals_2s = np.concatenate((bvals, bvals * 2), axis=0)
>>> bvecs_2s = np.concatenate((bvecs, bvecs), axis=0)
>>> gtab = gradient_table(bvals_2s, bvecs_2s)
>>> mevals = np.array([[0.00099, 0, 0],[0.00226, 0.00087, 0.00087]])
>>> S, dt, kt = multi_tensor_dki(gtab, mevals)
kurtosis_element
-
dipy.sims.voxel.kurtosis_element(D_comps, frac, ind_i, ind_j, ind_k, ind_l, DT=None, MD=None)
Computes the diffusion kurtosis tensor element (with indexes i, j, k
and l) based on the individual diffusion tensor components of a
multicompartmental model.
Parameters
- D_comps(K,3,3) ndarray
Diffusion tensors for all K individual compartment of the
multicompartmental model.
- frac[float]
Percentage of the contribution of each tensor. The sum of fractions
should be equal to 100%.
- ind_iint
Element’s index i (0 for x, 1 for y, 2 for z)
- ind_jint
Element’s index j (0 for x, 1 for y, 2 for z)
- ind_kint
Element’s index k (0 for x, 1 for y, 2 for z)
- ind_l: int
Elements index l (0 for x, 1 for y, 2 for z)
- DT(3,3) ndarray (optional)
Voxel’s global diffusion tensor.
- MDfloat (optional)
Voxel’s global mean diffusivity.
Returns
- wijklfloat
kurtosis tensor element of index i, j, k, l
Notes
wijkl is calculated using equation 8 given in [1]_
dki_signal
-
dipy.sims.voxel.dki_signal(gtab, dt, kt, S0=150, snr=None)
Simulated signal based on the diffusion and diffusion kurtosis
tensors of a single voxel. Simulations are performed assuming the DKI
model.
Parameters
- gtabGradientTable
Measurement directions.
- dt(6,) ndarray
Elements of the diffusion tensor.
- kt(15, ) ndarray
Elements of the diffusion kurtosis tensor.
- S0float (optional)
Strength of signal in the presence of no diffusion gradient.
- snrfloat (optional)
Signal to noise ratio, assuming Rician noise. None implies no noise.
Returns
- S(N,) ndarray
Simulated signal based on the DKI model:
\[S=S_{0}e^{-bD+\frac{1}{6}b^{2}D^{2}K}\]
single_tensor_odf
-
dipy.sims.voxel.single_tensor_odf(r, evals=None, evecs=None)
Simulated ODF with a single tensor.
Parameters
- r(N,3) or (M,N,3) ndarray
Measurement positions in (x, y, z), either as a list or on a grid.
- evals(3,)
Eigenvalues of diffusion tensor. By default, use values typical for
prolate white matter.
- evecs(3, 3) ndarray
Eigenvectors of the tensor, written column-wise. You can also think
of these as the rotation matrix that determines the orientation of
the diffusion tensor.
Returns
- ODF(N,) ndarray
The diffusion probability at r
after time tau
.
all_tensor_evecs
-
dipy.sims.voxel.all_tensor_evecs(e0)
Given the principle tensor axis, return the array of all
eigenvectors column-wise (or, the rotation matrix that orientates the
tensor).
Parameters
- e0(3,) ndarray
Principle tensor axis.
Returns
- evecs(3,3) ndarray
Tensor eigenvectors, arranged column-wise.
multi_tensor_odf
-
dipy.sims.voxel.multi_tensor_odf(odf_verts, mevals, angles, fractions)
Simulate a Multi-Tensor ODF.
Parameters
- odf_verts(N,3) ndarray
Vertices of the reconstruction sphere.
- mevalssequence of 1D arrays,
Eigen-values for each tensor.
- anglessequence of 2d tuples,
Sequence of principal directions for each tensor in polar angles
or cartesian unit coordinates.
- fractionssequence of floats,
Percentages of the fractions for each tensor.
Returns
- ODF(N,) ndarray
Orientation distribution function.
Examples
Simulate a MultiTensor ODF with two peaks and calculate its exact ODF.
>>> import numpy as np
>>> from dipy.sims.voxel import multi_tensor_odf, all_tensor_evecs
>>> from dipy.data import default_sphere
>>> vertices, faces = default_sphere.vertices, default_sphere.faces
>>> mevals = np.array(([0.0015, 0.0003, 0.0003],[0.0015, 0.0003, 0.0003]))
>>> angles = [(0, 0), (90, 0)]
>>> odf = multi_tensor_odf(vertices, mevals, angles, [50, 50])
single_tensor_rtop
-
dipy.sims.voxel.single_tensor_rtop(evals=None, tau=0.025330295910584444)
Simulate a Single-Tensor rtop.
Parameters
- evals1D arrays,
Eigen-values for the tensor. By default, values typical for prolate
white matter are used.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- rtopfloat,
Return to origin probability.
multi_tensor_rtop
-
dipy.sims.voxel.multi_tensor_rtop(mf, mevals=None, tau=0.025330295910584444)
Simulate a Multi-Tensor rtop.
Parameters
- mfsequence of floats, bounded [0,1]
Percentages of the fractions for each tensor.
- mevalssequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- rtopfloat,
Return to origin probability.
single_tensor_pdf
-
dipy.sims.voxel.single_tensor_pdf(r, evals=None, evecs=None, tau=0.025330295910584444)
Simulated ODF with a single tensor.
Parameters
- r(N,3) or (M,N,3) ndarray
Measurement positions in (x, y, z), either as a list or on a grid.
- evals(3,)
Eigenvalues of diffusion tensor. By default, use values typical for
prolate white matter.
- evecs(3, 3) ndarray
Eigenvectors of the tensor. You can also think of these as the
rotation matrix that determines the orientation of the diffusion
tensor.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- pdf(N,) ndarray
The diffusion probability at r
after time tau
.
multi_tensor_pdf
-
dipy.sims.voxel.multi_tensor_pdf(pdf_points, mevals, angles, fractions, tau=0.025330295910584444)
Simulate a Multi-Tensor ODF.
Parameters
- pdf_points(N, 3) ndarray
Points to evaluate the PDF.
- mevalssequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
- anglessequence,
Sequence of principal directions for each tensor in polar angles
or cartesian unit coordinates.
- fractionssequence of floats,
Percentages of the fractions for each tensor.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- pdf(N,) ndarray,
Probability density function of the water displacement.
single_tensor_msd
-
dipy.sims.voxel.single_tensor_msd(evals=None, tau=0.025330295910584444)
Simulate a Multi-Tensor rtop.
Parameters
- evals1D arrays,
Eigen-values for the tensor. By default, values typical for prolate
white matter are used.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- msdfloat,
Mean square displacement.
multi_tensor_msd
-
dipy.sims.voxel.multi_tensor_msd(mf, mevals=None, tau=0.025330295910584444)
Simulate a Multi-Tensor rtop.
Parameters
- mfsequence of floats, bounded [0,1]
Percentages of the fractions for each tensor.
- mevalssequence of 1D arrays,
Eigen-values for each tensor. By default, values typical for prolate
white matter are used.
- taufloat,
diffusion time. By default the value that makes q=sqrt(b).
Returns
- msdfloat,
Mean square displacement.